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Phase Diagram of the Half-Infinite Ising Model 
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The phase diagram is analyzed rigorously, and in particular the wetting trans- 
ition is discussed. 
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1. I N T R O D U C T I O N  

In this paper I report on new rigorous results for the half-infinite Ising 
model, which I have obtained in collaboration with J/irg Fr6hlich. (1,2) The 
plan of the paper is as follows. In Section 2, I review the known results for 
two dimensions and state my main results. Section 3 treats the surface free 
energy, and Sections 4--6 treat, respectively, the phase diagram in the 
absence of external fields, with a boundary external field (the wetting 
transition), and with a boundary field and a bulk external field. 

2. I N T R O D U C T I O N  

We study the Ising model on the half-infinite lattice 0_ = ~d 1 x 2 +, 
whose points are denoted by i, j,... or by i =  (x, z), x ~  Z d 1, z e 2 +. The 
boundary layer, or first layer, of the lattice is Z, 

Z =  { i t  0_; i =  (x, 1)} (2.1) 

For each lattice point i we have an Ising spin o-(i)= a(x, z ) =  _+1, and the 
Hamiltonian is formally given by 

H = -  ~ K( i , j )  a ( i ) a ( j ) - - 2  ~ ~ ( i ) - h  ~ ~r(i) (2.2) 
( 0 )  c Fk i t  L i t  Z 

i D6partements de math6matiques et de physique, Ecole Polytechnique F6d6rale de Lausanne, 
CH-1015 Lausanne, Switzerland. 
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where ( / j )  denotes a pair of nearest neighbor points. Our choice of the 
coupling constant is 

K(i , j )=J>O,  i eZ ,  j e Z  
(2.3) 

K(i, j )  = K > 0, otherwise 

We always choose h/> 0, but the bulk field 2 is arbitrary. 
The model with 2 = 0 and dimension d = 2 was investigated by McCoy 

and Wu (3) when J =  K and by Au-Yang (41 when J r  K. In these works, the 
surface free energy is computed as a function of the temperature and the 
field h. The surface free energy F p is defined with periodic boundary con- 
dition (b.c.). It is an analytic function of h and fl (the inverse temperature) 
when h C0. At h = 0 ,  it has a singularity at tic(2), the inverse critical tem- 
perature of the two-dimensional model with coupling constant K. Above 
tic(2) and at h = 0, the symmetry of the model is broken, and 

OF p OF p 
lira r lira - - -  (2.4) 

The critical exponents of the transition at tic are 7 = 0, e = 1, fl = 1/2, v = 1. 
These exponents are quite different from the exponents of the two- 
dimensional model. 

However, these results do not give the phase diagram at 2 = 0, since 
they do not describe the wetting transition, which occurs for nonzero h. 
This transition was rigorously established by Abraham (5) for d = 2  and 
J = K .  In order to explain these results, let us interpret the model as a 
model of a binary mixture, with phases plus and minus, in the presence of a 
substrate. The field h and coupling J describe the interaction of the sub- 
strate with the binary mixture. Since h is positive, the substrate adsorbs 
preferentially the plus phase. Let J and K be given, and let 2 = 0. We also 
suppose that the temperature is low enough so that the two-dimensional 
Ising model with coupling K is in the coexistence region. Far from the sub- 
strate we suppose that the system is in tile minus phase. Since h is positive, 
there is formation of a film of the plus phase near the substrate. Two 
situations are possible. The thickness of this film is microscopic or 
macroscopic. In the former case, the plus phase wets partially the substrate, 
and in the latter case, we have complete wetting. The wetting transition is 
the transition from partial wetting to complete wetting. This transition can 
be detected by computing the magnetization profile (a(0,  z ) ) -  as a 
function of z >~ 1. The index minus indicates that the system is in the minus 
phase in the bulk. This is the method used by Abraham. (5) Usually this 
transition is described in terms of surface tension. Let J, K, and fl be fixed. 
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If 2 r 0, the d-dimensional Ising model has only one phase and it is expec- 
ted that the surface free energy is well defined, i.e., is a well-defined function 
of the parameters of the model. Equivalently, we can say that the surface 
free energy is independent of the b.c. Thus, we have a function F(fl; J, K, 
h, 2). However, when 2 = 0 and fl is large enough, the bulk system has two 
different phases, and it is no longer true that the surface free energy is a 
function of the parameters of the model only. Indeed, if 2 $ 0, we have the 
plus phase in the bulk, and if ,i t 0, we have the minus phase in the bulk. In 
this last case we have seen that there is formation of a film of the plus 
phase between the minus phase and the substrate. The interface between 
the minus phase and the film gives a nonzero contribution to the surface 
free energy. To summarize, the surface free energy depends on the nature of 
the phase in the bulk, and we must consider 

F+ (/~; J, K, h, 0) = lim F(/~; J, K, h, ~.) (2.5) 
2+0 

respectively, 

F-(fi; J, K, h, 0 ) =  lim F(fl; J, K, h, 2) (2.6) 
2TO 

It is also possible to define F +, resp. F - ,  by taking directly 2 = 0, and by 
using +b.c., resp. -b .c .  This is what we do in Section 3. In the physics 
literature F + is called the surface tension of the plus phase against the 
substrate and F -  is the surface tension of the minus phase against the 
substrate. Let ~ +(fl; K) be the surface tension between the plus phase and 
the minus phase when there is no substrate. 

From the above discussion, we must have F > F  +. Let us suppose 
that we have complete wetting. In this case 

F (fl;J,K,h, O)=F+(fl;J,K,h,O)+~+-(fl;X) (2.7) 

Indeed, the difference between F -  and F + is the free energy due to the 
interface between the minus phase in the bulk and the adsorbed film. But 
this film is macroscopic, meaning that this interface is far from the 
substrate. Consequently, the interface free energy is ~+. Relation (2.7) is 
Antonov's rule. It characterizes the complete wetting regime. For 
thermodynamic reasons, we must have 

F (fl;J,K,h,O)<.F+(fl;J,K,h,O)+r+(fl;K) (2.8) 

The partial wetting regime is characterized by F -  < F + + r +. We prove in 
Section 5 that Antonov's rule is equivalent to the existence of a unique 
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equilibrium state. For 2 = 0 it is possible to show that there is a unique 
equilibrium state if and only if 

<o(0, 1)) + = <0(0, 1 ) ) -  (2.9) 

Here ( ( - ) ) +  [resp. ( ( . ) ) - ]  are the equilibrium states of the model 
defined with +b.c. [resp. -b .c . ] .  

Let us come back to the work of McCoy and Wu. We can show that 
their definition of the surface free energy F p coincides with F + for h >~ O. By 
symmetry, F p = F for h ~ 0. In particular, 

c~F p 8F + 

Oh Oh 
- - -  ~o(0, 1)) +(h), h > 0  (2.10) 

and 

(~F p 8 F  

8h 8h 
- - -  ( o (0 ,1 ) )  (h), h<O (2.11) 

Relation (2.4) can be rewritten as 

( o ( 0 , 1 ) )  ( h = 0 ) r  (2.12) 

In order to discuss the wetting transition we need (a(0, 1)) (h) for h > 0 
[or (o(0, 1))+(h),  h < 0]. It is interesting to notice that McCoy and Wu 
computed indirectly @(0, 1)) (h) for h > 0  (although we did not check 
this explicitly). For h < 0, (o(0, 1)) (h) is an analytic function of h. They 
found that there is an analytical continuation of this function for h > 0. (In 
the d-dimensional Ising model, such an analytical continuation is 
impossible.(6)). This analytical continuation is simply the expected value of 
0(0, 1) in the equilibrium state ~ ( . ) ) - ( h )  with h >0.  Therefore we have 
~o(0, 1)) (h), h > 0. We have seen above that the complete wetting regime 
coincides with the region where we have a unique equilibrium state. Using 
the analytical continuation of (o(0, 1 ) ) - (h) ,  we can determinate the 
wetting transition [see (2.9)], and it is not difficult to check that we get the 
same result as in Ref. 5. 

Before ending this introduction, we give a precise definition of the 
equilibrium states ( ( . ) )  + and ~ ( . ) )  . Let 

A ( L , m ) = { ( x , z ) : l x k l < < . L , k = l  ..... d - 1 ; l < < . z < . m }  (2.13) 

We fix the values of the spins for all i e L \A (L ,  M): o( i )=  1. This is by 
definition the +b.c. [The -b .c .  corresponds to o ( i ) = - 1  for all 
i e  [ \ A ( L ,  M).] If we restrict the summation in (2.2) over all pairs ( / j )  



Phase Diagram of the Half-Infinite Ising Model 765 

such that {i,j}c~A(L,M)~a~, then we get a Hamiltonian H + The 
L , M  " 

corresponding partition function and finite-volume Gibbs state are denoted 
by Z+(L,M) and ( ( - ) ) +  By taking the limit L ~ o o  and M ~ o o ,  we L , M "  

get an equilibrium state for the infinite system in 1_, 

+ ( ( . ) ) + =  lim (('))L,M (2.14) 
L , M ~ o r  

In a similar way we define ( ( - ) )  . The main properties of these states are 
summarized as follows: 

1. They are extremal equilibrium states. 

2. They are Z-invariant,  i.e., invariant under all lattice translations of 
the type (x, z) ~ (x + a, z), a e Z a -  ~. 

3. ( ( - ) ) +  [-resp. ( ( - ) )  ] are right-continuous [resp. left-con- 
t inuous] in h and in 2. 

4. There is a unique equilibrium state in the model if and only if 
( a ( i ) )  + = ( o - ( i ) ) -  Viel_. 

The above results are valid for h e ~ and 2 e R, and are consequences 
of the F K G  inequality. If we consider only h >7 0 and 2 ~> 0, then we can 
improve property 4: 

5. Let ( ( - ) )  be any equilibrium state. If (a(i)) + = (a(i)) for some 
i~l_, then ( ( - ) )  + = ( ( - ) ) .  In particular, there is a unique 
equilibrium state if (a(0 ,  1))  + = (a(0 ,  1 ) ) - .  

Proofs can be found in Ref. 1. Let us finally remark that we use the method 
of correlation inequalities and our results are not restricted to the 
dimension d = 2. 

3. S U R F A C E  FREE E N E R G Y  

We define precisely F+(fl;J,K,h, it), the surface free energy with 
+b.c., and F (fl; J, K, h, 2) is defined in a similar way. Then we prove the 
basic relation (2.8). 

Let Z+(L, M) be the partition function of the model in A(L, M) with 
+b.c. We introduce a second copy of this model in the box A'(L, M) 
obtained by a reflection at the plane z = 1/2. If 

(2(L, M ) =  {ie Za: [ikl ~< L, 1 ~<k~< d -  1, - M <  ia<~ M} 

then A'(L,M)=f2(L,M)\A(L,M). Let Q+(L,M) be the partition 
function of the Ising model 

--K ~, a(i) a(j)--2 ~ a(i) (3,1) 
< ~ >  = g d  i t  Y d 

822/47/5-6+ 11 
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in the box f2(L, M) with +b.c. By definition 

--1 (Z+(L, M)) 2 
F + =  lira In (3.2) 

L~ o~ 2/~ IS(L)I Q+(L, M) 
M ~ o o  

where IS(L)I is the cardinality of the set N ~ A(L, M) = 2(L). In (3.2) we 
can choose M = U ,  e > 0. Using the F K G  inequality, we can show that the 
limit (3.2) is well-defined for h e ~ and 2 ~ ~ and that it is independent of 
~ > 0 .  

Let 2 = 0. By symmetry we have Q + (L, M) = Q (L, M). Therefore, we 
can express r+ = F -  (2 = 0) - F + (2 = 0) as the limit 

- 1 Z -  (L, M)  
lim - -  In (3.3) 

L ~  fl IS(L)I Z+(L, M) 
M ~ o o  

Let us modify the - b . c .  as follows: instead of taking o(x, z ) =  - 1  for all 
(x,z)q~A(L,M), we take o(x,z)=l for all (x,z)r with O~<z<~ 
M/2, and a(x, z ) =  - 1  for all (x, z)r M) with z>M/2. The new par- 
tition function is denoted by Z+-(L, M). It is easy to see that 

Z+-(L, M) 
- e x p  O(L 't 2+~) (3.4) 

Z+(L, M) 

when M =  U .  By choosing 0 < c~ < 1, we see that the limit of 

-1  , Z+-(L, M) 
m + (3.5) 

/~ IS(--L)I Z (L, M) 

is equal to (3.3). The quantity (3.5) is a positive, monotone increasing 
function of h, for h ~> 0 (GKS inequality). We get an upper bound for (3.5) 
by taking the limit h ? o% 

-1  lnZ+-(L,M-1) (3.6) 
fi IX(~L)] Z+(L, M-- 1) 

where we recognize the usual definition of the finite-volume surface tension 
of the Ising model (3.1) with 2 = 0  (see e.g., Ref. 7). By taking the limit 
L ~ oe, we have proved the basic relation 

F ~<F + + r +  (3.7) 

provided that we may take M = L ~, 0 < c~ < 1, in the definition of the sur- 
face tension. This is an important,  but technical point, which is proved in 
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Refs. 1 and 2. It is not difficult, using correlation inequalities, to establish 
the following properties for ~+(fl; J, K, h): 

1. It is a monotone increasing function of J, K, and h, and 
L + ( h = 0 ) = 0 .  It is a concave function of h, h~>0. 

2. + r/-(fl) =z•  if J>~K and h>~K. 

7(fl ,  J , K , h ) = ~  +- 3. limh,oov + " (fl;K). 

Proofs are given in Ref. 2. Using these results, we define 

hw(fl; J, K) = inf{h: F -  (fi; ,/, K, h, O) - F + (fl; J, K, h, 0) = ~ + (fi; K) } (3.8) 

Partial wetting corresponds to h < hw, and complete wetting corresponds 
to h > hw. From the above results, we see that there is a wetting transition 
at hw, 0 <hw ~<K, when J > K .  We prove in Section 5 the lower bound, 
which is valid for all J and K, 

hw(fl; J, K) >>. �89 • K) (3.9) 

4. PHASE DIAGRAM AT h = A = 0  

We set f l=  I, h = 2 = 0 ,  and we consider the phase diagram in the 
(J, K) plane for dimensions d>~ 3. The results are summarized in Fig. 1, 

3 

3<.t,~-'1 

k c c ~  

Fig. 1 

k 
) 
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which we have divided into three regions, R1, R2, and R3. The high- 
temperature region is R1. It is defined by 

{ ( J , K ) : Z Z ~ x ~  a l ( a ( O ' l ) ~ ( x ' l ) > + < c ~ }  (4.l) 

Inside region R1, (a(0, 1 ) ) + =  0, and this implies that there is a unique 
equilibrium state. We can show that the parallel correlation length ~z is 
finite, where {r is by definition 

1 >+ 
~ s  1)o(xL, 1) (4.2) 

with xL= (L, 0 ..... 0). Moreover, the boundary of the high-temperature 
region is critical, since -1 {z (aT, K) is a continuous function of J and K. Inside 
R~, the transverse correlation length ~• is finite, 

{s  lim --1 ln(~r(0, 1); o(0, z ) )  + (4.3) 
z ~ o O  Z 

In the regions R2 and R3 the symmetry of the model is broken, 
(a(0, 1 ) ) + >  0. These regions are separated by a critical line K=K,(d). 
We can show, for )~=0 and K<<,K,(d), that 

~• K, h, 0) = ~,s(K) (4.4) 

where {~s is the correlation length of the d-dimensional Ising model. In 
particular, the critical exponent v• is equal to the exponent v of the Ising 
model. In region R 2 the bulk is still disordered. From these results we 
could conclude that there is no intermediate phase between regions R1 and 
R 2. Although this is most likely the case, we have not be able to prove it. 
In the intermediate phase (o(0, 1)) + would be zero and Zz would diverge. 

5. T H E  W E T T I N G  T R A N S I T I O N  

In this section 2 = 0  and h>0.  The case h < 0  is obtained by 
symmetry. In Section 3 we established the existence of a wetting transition 
at h w on the basis of the thermodynamics. We now wish to explain the 
connection with equilibrium states. This connection is made through the 
formula 

r  dh' I-(a(0, 1))+(h') - <•(0, 1)>-(h ')]  (5.1) 
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which follows from property 1 of Section 3. The integrand in (5.1) is a 
nonnegative, monotone decreasing function of h'. From (5.1) we get 
immediately the lower bound (3.9): at h = h  .... T f ( h w ) = r  -+, and the 
integrand in (5.1) is bounded by 2. If h>hw,  r,-+(h)=z • Therefore the 
integrand in (5.1) must be zero for all h' >hw. This implies the unicity of 
the equilibrium state for those values of h. If h < h,,, we have, by definition 
of h .... rT+(h)<z +. Since we know that limhToo r,-+(h)=r • we must have 
(o-(0, 1)) +(h) r (a(0,  1)) (h). These results show that h~(/?; J, K) can 
also be defined by 

h,,(fi;J, K)=inf{h:  <a(0, 1 ) ) + ( f l ; h ) =  <a(0, 1)) (fi;h)} (5.2) 

Thus, complete wetting corresponds to unicity of the equilibrium state. 
This is a precise formulation of the fact that the thickness of the adsorbed 
phase is macroscopic in the complete wetting regime. At h = h~, one may 
find a unique state or several states. The phase diagram in the (h, T) plane 
for a model with J/K~> 1 and d~> 3 is shown in Fig. 2. The temperature T, 
is the temperature of the surface phase transition. The line T =  To(d) is a 
critical line, in the sense that ~l  diverges when T$ Tc(d) [see (4.4)]. 
However, if T =  Tc(d) and h r 0, the surface free energy is analytic in h and 

Zz -- Oh 2 F(h) 

is finite. 

T 

-rs 

To(3) 

~~ complete 
. \ wetting 

/ partial ,aettincj \ 
/ recjlme \ > h 

-K K 
Fig. 2 
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Using the equivalence between the definitions of hw, (3.8) and (5.2), it 
is possible to prove the existence of several equilibrium states in some 
situations. For  example, we can show that there is a unique equilibrium 
state for any finite temperature and any dimension d when J = K =  h. 
However, if d~> 2, K =  h, but J <  K, then there is a finite function fl*(J; d) 
such that for fl>fl*(J;d), L+(fl;J,K,h)<~+(fl;K). This implies that 
hw(fl; J, K ) >  K, and also the existence of several equilibrium states when 
fl > fl*(J; d). 

6. A L A Y E R I N G  T R A N S I T I O N  

We now consider h # 0 and 2 # 0. We suppose that F + = F -  for )~ # 0. 
From this assumption, it follows that there is a unique equilibrium state for 
h > 0 and 2 > 0. The case h > 0 and 2 < 0 is more interesting. Let d >~ 3 and 
K <  2J be given. If fl is fixed and large enough, and if 2 < 0, then we can 
find a function of 2, hp.w.()~), with the following properties: 0 < hp.w.(2 ) ~< 
K -  2; there exists a positive constant C(fl), independent of 2, such that 

(G(0, 1))  (h,~4<~-C(fl), 0 ~< h ~< hp.w.(,~) 
(6.1) 

<~(0, ~)>-(h, ,~) >~ C(fl), h >~ hpw.(;4 

The function hp.w.(~ ) is decreasing in 2, and limhTohp.w.(2)=h* with 
0 < h *  ~<K. Since ( ( . ) > -  is left-continuous in 2, relations (6.1) still hold 
for 2 = 0 and hp.w.(0 ) = h*. The transition at hp.w.(~ ) is a first-order layering 
transition. It is an open question to know whether h* coincides with hw or 
not. We only know that, for J <  K and fl large enough, we have cases with 
h* ~K<hw(J, K) (see Section 5). Figure 3 shows this layering transition 
line. 

h 

+ - 4 - +  
4- - I -+  

K 

h* 

Fig. 3 
~ X  
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It is interesting to notice that  the line hp.w.(2 ) is asymptotical ly given 
by h = K -  2 when fl 1' oe. The line h = K -  2, with h >~ 0 and 2 ~< 0, separates 
two kinds of g round  states. Below the line the g round  state is unique for 
2 < 0  and a ( i )  == - - 1 .  Above the line, the g round  state is also unique for 
2 < 0 ,  but  now a(x, 1 ) = 1  and ~ ( x , z ) = - 1  for z~>2. On  the line itself 
there is coexistence of the two kinds of g round  states. In the mean-field 
t reatment  of the model  on a la t t i ce  one can show the existence of several 
layering transitions (see, e.g., the review in Ref. 8). Y. Sinai and 
S. Shlosman have informed us that  A. G. Basuev claims to have recently 
proved the existence of several first-order transitions for the Ising model  
with h = J =  K when 2, negative, tends to zero at fixed low temperature. 
The transit ion line defined above would correspond to the first transit ion 
found by Basuev when 2 tends to zero. 

A C K N O W L E D G M E N T S  

It is a pleasure to thank D. Abraham,  E. Bonomi,  J. Bricmont,  and 
S. Shlosman for helpful discussions. 

R E F E R E N C E S  

1. J. Fr6hlich and C. E. Pfister, The wetting and layering transitions in the half-infinite Ising 
model, Europhys. Lett. 3:845-852 (1987). 

2. J. Fr6hlich and C. E. Pfister, The semi-infinite Ising model I and II, Commun. Math. Phys. 
109:493-523 (1987), and to appear in 1987. 

3. B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard University Press, 
Cambridge, Massachusetts, 1973). 

4. H. Au-Yang, J. Math. Phys. 14:937-946 (1973). 
5. D. B. Abraham, Phys. Rev. Lett. 44:1165-1168 (1980). 
6. S. N. Isakov, Commun. Math. Phys. 95:427443 (1984). 
7. C. E. Pfister, Interface and surface tension in the Ising model, in Scaling and Self-Similarity 

in Physics, J. Fr6hlich, ed. (BirkhS_user, Boston, 1983), pp. 139 161. 
8. M. Wortis, R. Paudit, and M. Schick, Multilayer adsorption: A unified picture, in Melting, 

Localization, and Chaos, R. K. Kalia and P. Vashishta, eds. (Elsevier, 1982), pp. 13 27. 


